W/Z+jets and W/Z+HF Production at the Tevatron

Keith Matera

From the University of Illinois at Urbana-Champaign on behalf of the CDF and D0 collaborations

Rencontres de Moriond QCD, La Thuile (IT) 22-29 March 2014

W/Z plus jets / heavy flavor production is a good probe of QCD...

First-order production is sensitive to the proton PDF

 Provides stringent test of perturbative QCD calculations

• Small h.f. σ = challenging!

...and W/Z plus jets/h.f. is an important model for background in other searches

As well as new physics searches (e.g. dark matter candidates)

The Tevatron provided a decade's worth of √s =1.96 TeV pp data

Collided pp bunches at √s=1.96 TeV through 30/09/2011

■ Peak luminosity ~3-4 x 10³² cm⁻² s⁻¹

While designed for high- p_T physics, CDF & D0 are powerful h.f. tools

- High CM energy means more species of h.f production---even compared to B factories
- Precision vertex reconstruction capabilities (CDF & D0)
- Excellent tracking for mass resolution (CDF)

- Powerful trigger on displaced vertices (CDF)
- Charge symmetric detector (D0)
- Hermitic calorimeter and excellent energy resolution (D0)

A legacy of great W/Z + jets/heavy flavor results! And now some more...

Most recently:

Final State	Luminosity	Detector	Publication
W+jets	3.7 fb ⁻¹	D0	[Phys. Rev D 88 , 092001 (2013)]
Z+c	9.7 fb ⁻¹	D0	[PRL 112 , 042001 (2014)]
W/Z+Y	9.1 fb ⁻¹	CDF	[CDF Public Note 11007 (Preliminary)]
W/Z+D*	9.7 fb ⁻¹	CDF	[CDF Public Note 11087 (Preliminary)]

This is what we'll focus on in this talk!

A standard W/Z+jets analysis begins with a high- p_T lepton trigger

 This lepton is paired with MET (for W) or an oppositely-signed lepton (for Z)

 Midpoint jet algorithm defines jets within a cone of R=0.4-0.7

- For heavy-flavor, a secondary vertex is tagged. M_{inv} of this vertex can be fit to bottom / charm / light flavor profiles.
- Detector-level cross-sections are unfolded back to particle level with MC and data-driven techniques.

D0 expanded the set of measured observables in *W*+*n*-jet events at TeV.

Comprehensive study measuring 40 differential cross-sections

- Good agreement b/w data and NLO Blackhat
- Help in the tuning of MC
- Test of parton emission models

D0 expanded the set of measured observables in *W*+*n*-jet events at TeV.

At wide opening angle, other models provide better agreement

New Y+W/Z measurements provide upper limits on SM & SUSY searches

Y+W/Z is a rare process with a SM cross-section predicted to be outside the range of sensitivity of the Tevatron

Sensitive to non-relativistic
 QCD models and new physics
 (e.g. a SUSY Higgs→Y+W/Z)

CDF has observed no Y+W/Z excess, setting the best σ limits on $p\bar{p} \rightarrow Y+W/Z$

- Looks for $Y(1s) \rightarrow \mu\mu$ and W/Z charged lepton decays with standard cuts
- Observes 1(1) Y+W(Z) candidate over an expected bkg of 1.2±0.5 (0.1±0.1) events

Sets 95% C.L. cross-section limits:

	$\Upsilon + W$	$\Upsilon + Z$
expected limit (pb)	5.4	13
observed limit (pb)	5.4	20
Run I observed limit (pb)	93	101

Last summer, D0 announced the first observation of $Z+c_{jet}$ at the Tevatron

Jets flavor was identified using a combination of jet properties:

■ Jets required to have p_T >20 GeV, $|\eta|$ <2.5

Jets in Z events had more charm than predicted by NLO, on average

Measures

$$\frac{\sigma(Z + c_{jet})}{\sigma(Z + \text{jet})}$$
 and $\frac{\sigma(Z + c_{jet})}{\sigma(Z + b_{jet})}$

Integrated c-jet fractions
 2.5 times higher, on avg,
 than NLO predictions

Measured (stat) (syst)
$$R_{c/jet} = 8.92 \pm 0.0053 \pm 0.0089$$

$$R_{c/b} = 4.00 \pm 0.21 \pm 0.58$$

 Results agree best with Pythia + enhanced g→cc splitting ratio

■ Fully-reconstructs $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ at the track level in W/Z events

• Signal discriminant is mass difference between D^* and D^0 vertices. Background is reduced with a neural network to improve stat. unc.

Measurements of $\sigma(W/Z+D^*)/\sigma(W/Z)$ compare favorably with simulation

Each decay mode is considered separately:

Measured quantity for	CDF Run II Data	Pythia 6.2.16
$p_T(D^*) > 3 \text{ GeV}$	(%)	CTEQ5L (%)
$\sigma(W_{e\nu}+D^*)/\sigma(W_{e\nu})$	$1.74 \pm 0.21 \pm 0.17$	1.77 ± 0.01
$\sigma(W_{\mu\nu}+D^*)/\sigma(W_{\mu\nu})$	$1.75 \pm 0.17 \pm 0.03$	1.77 ± 0.01
$\sigma(Z_{ee} + D^*)/\sigma(Z_{ee})$	$1.0 \pm 0.6 \pm 0.2$	1.36 ± 0.01
$\sigma(Z_{\mu\mu}+D^*)/\sigma(Z_{\mu\mu})$	$1.8 \pm 0.5 \pm 0.2$	1.36 ± 0.01

■ This is the lowest-momentum measurement of charm production in vector boson events at the Tevatron (*previously* > 15 GeV only)

• Acceptance is modeled as a function of D* p_T using Pythia MC:

Process	Inclusive	Inclusive
(with D^* understood to decay	W/Z	$W/Z + D^*$ tag rate w/ NN
as $D^* o D^0(o K\pi)\pi)$	tag rate	$(p_T(D^*) > 3 \text{ GeV})$
$p\bar{p} o W(o e u) + D^*$	0.195	0.021341 ± 0.000002
$p\bar{p} \to W(\to \mu\nu) + D^*$	0.219	0.024171 ± 0.000002
$p\bar{p} ightarrow Z(ightarrow ee) + D^*$	0.482	0.009388 ± 0.000002
$p\bar{p} \to Z(\to \mu\mu) + D^*$	0.614	0.012385 ± 0.000003

Good agreement with Pythia 6.2.16 using CTEQ5L PDF set

Yellow error bands shown are at the 68% C.L.

$\sigma(W+D^*)/\sigma(W)$ as a function of N_{jets} promises similar agreement

Tagged event fractions are shown below (not unfolded with A·ε)

- MC comparisons are with inclusive $W \rightarrow ev/\mu v$ production samples
- First measurement of W+charm in zero-jet events at the Tevatron

Summary

- The full CDF/D0 datasets continue to provide interesting new *W*+*jets* and *W*+*h.f.* results, adding to their legacy
- In the past year, have provided two firsts in $p\bar{p}$ collisions:
 - first observation of Z+c
 - first observation of $W/Z+D^*$ at low $p_T(p_T > 3 \text{ GeV})$
- Have also expanded the library of W+jets knowledge, and placed the current best limits on $p\bar{p} \rightarrow Y + W/Z$ production
- These analyses will benefit MC tunings, and many future analyses at both the Tevatron and LHC---more to come as we continue to explore the full datasets!

Further Reading

• All results discussed in this talk are available on the CDF and D0 Public Results pages:

CDF:

http://www-cdf.fnal.gov/physics/new/qcd/QCD.html

D0:

http://www-d0.fnal.gov/results/

CDF W/Z+D* analysis can also split the signal by production process

■ There are three major contributions to our final *W*+*D*^{*} signal:

$$s(d)+g\rightarrow W+c$$

$$s(d) \longrightarrow W^{-}$$

$$g \xrightarrow{5000000} c$$

$$14 \pm 6\%$$

- The percentages above are derived using neural networks, and by exploiting sign correlations in the *W* and *c* of Process 1.
- Again, first measurement of these processes at low p_{τ} (>3 GeV)!